Oncogenomic disruptions in arsenic-induced carcinogenesis

نویسندگان

  • Adam P. Sage
  • Brenda C. Minatel
  • Kevin W. Ng
  • Greg L. Stewart
  • Trevor J.B. Dummer
  • Wan L. Lam
  • Victor D Martinez
چکیده

Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis.

The International Agency for Research on Cancer (IARC) declared arsenic a class I carcinogen. Arsenic exposure induces several forms of human cancers, including cancers of skin, lung, liver, and urinary bladder. The majority of the arsenic-induced cancers occur in skin. Among these, the most common is Bowen's disease, characterized by epidermal hyperplasia, full layer epidermal dysplasia, leadi...

متن کامل

Metabolism and toxicity of arsenic: A human carcinogen

Inorganic arsenic is considered the most potential human carcinogen, and humans are exposed to it from soil, water, air and food. In the process of arsenic metabolism, inorganic arsenic is methylated to monomethylarsonic acid and finally to dimethylarsinic acid, followed by excretion through urine. Thus, arsenic exposure may cause DNA hypomethylation due to continuous methyl depletion, facilita...

متن کامل

Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression.

Inorganic arsenic, a human carcinogen, is enzymatically methylated for detoxication, consuming S-adenosyl-methionine (SAM) in the process. The fact that DNA methyltransferases (MeTases) require this same methyl donor suggests a role for methylation in arsenic carcinogenesis. Here we test the hypothesis that arsenic-induced initiation results from DNA hypomethylation caused by continuous methyl ...

متن کامل

Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism

Arsenic is a well-documented human carcinogen. The present study explored the role of the onco-miR, miR-21 and its target protein, programmed cell death 4 (PDCD4) in arsenic induced malignant cell transformation and tumorigenesis. Our results showed that treatment of human bronchial epithelial (BEAS-2B) cells with arsenic induces ROS through p47phox, one of the NOX subunits that is the key sour...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017